Lecturer: Prof. David L. Wiltshire, von Haast 627, David.Wiltshire@canterbury.ac.nz Tutor: Alex Goodenbour alex.goodenbour@pg.canterbury.ac.nz

ASSESSMENT:

Final examination (60\%); Test (10\%) [Tuesday, 28 March]
5 problem sets (I will count the best 4 of the 5) (20\%); Lecture presentation (10\%)

TIMETABLE:

Lectures: Term 1 Mon 9am Link 309, Tue 9am Rehua 002
Term 2 Mon 5pm Erskine 446, Tue 5pm Rehua 002 - via zoom from UK
Tutorials: Wed 5 pm, Ernest Rutherford 465 (to be confirmed)
Drop in class: Thu 1 pm, Ernest Rutherford 465
Note: In week 1 the Wednesday (22 Feb) and Thursday (23 Feb) slots will both be lectures.

LEARNING OUTCOMES:

In this course students will embark on a voyage of discovery of the deep theoretical principles that underlie Newtonian and relativistic mechanics, and to appreciate why the laws of physics are the way they are. They will learn new ways of thinking about the physical world, allowing deeper appreciation of the links between the classical and quantum regimes.
Armed with the powerful techniques of Lagrangian and Hamiltonian dynamics, and Cartesian tensors, students will have the tools to simplify complex mechanical problems to their basic elements. With elegant symmetry principles such as Noether's theorem they will understand the deep connection between symmetries of spacetime and conservation laws, seeing how, for example, Kepler's second law follows from rotational symmetry and conservation of angular momentum. They will apply this new understanding to a variety of physical systems, from coupled oscillators to particles moving in electromagnetic fields. Finally they will discover how the symmetries of special relativity are most succinctly described with the language of 4 -vectors, and derive the Lorentz group from the Principle of Relativity.
This course is the basis for all advanced courses in theoretical physics.

OUTLINE

* Dynamical systems - definitions. Constrained systems. Lagrange's equations.
* Principle of least action. Euler-Lagrange equations.
* Symmetries, conservation laws and Lie groups. Noether's theorem.
* Oscillations: linearization. The linear chain.
* Hamiltonian formulation. Legendre's transformation.
* Transformation theory. Canonical transformations. Generating functions. Poisson brackets.
* Hamilton-Jacobi method. Physical applications: (e.g. wave mechanics and Schrödinger's equation).
* Special relativity: Kinematics, symmetries and Lagrangian formulation

RECOMMENDED TEXT: [\dagger] H. Goldstein, C. Poole and J. Safko, Classical Mechanics, 3rd ed. (Addison-Wesley, 2002)

Other useful references:

[1] T.L. Chow, Classical Mechanics, (Wiley, New York, 1995)
[2] L. Landau and E. Lifschitz, Mechanics, 3rd ed] (Pergamon, 1976)
[3] I. Percival and D. Richards, Introduction to Dynamics (Cambridge Univ. Press, 1982)
[4] V.I. Arnold, Mathematical Methods of Classical Mechanics, 2nd ed. (Springer, Berlin, 1989)
[5] E.J. Saletan and A.H. Cromer, Theoretical Mechanics (Wiley, New York, 1971)
[6] D.E. Bourne and P.C. Kendall, Vector Analysis and Cartesian Tensors, 3rd ed., (CRC Press, 2002), chapter 8, [for Orthogonal Transformations in $\S 3$ only].
[7] D.W. Jordan and P. Smith, Nonlinear Ordinary Differential Equations, 4th ed. (Oxford Univ. Press, 2007) chapters 1,2 [for $\S 4$. Oscillations only]
[8] N.A. Doughty, Lagrangian Interaction, (Addison Wesley, Sydney, 1990), chapters 12,13 [for $\S 6$. Special Relativity only].
[9] E. Ott, Chaos in Dynamical Systems, (Cambridge University Press, 1993).

LECTURE PRESENTATION:

Students taking PHYS326 as an Honours level course PHYS456 are required to do some sort of additional work. This will consist of part of a lecture on the topic of Classical Chaos to be given to the whole class in mid Term 2, at a time which is mutually convenient, given the due dates of the students' other assignments. (The students between them will do a whole 50 minute lecture and should work out their choices of topics in consultation with each other.)

- Each student is required to prepare a lecture notes handout to give to the class to accompany their portion of the lecture. The mark for the lecture will be based 60% on the written handout and 40% on the lecture delivery.
- The lecture should draw on material in chapter 11 of the course text [$\dagger]$; and should include a definition of chaos, and a discussion of Liapunov exponents, but beyond this the choice of material is left to the discretion of the student. While the lecture should not go beyond the mathematical level of Goldstein, Poole and Safko [\dagger], students may wish to draw on other sources, such as the book of Ott [9], or to give examples from any part of physics that most interests them.

Assignments:

Copies of the standard Assignment Cover Sheet are on the course Learn page. As long as you have your name on the first page of your assignments, I do not require you to add the assignment cover sheet. However, it will be always be understood that statements on the cover sheet apply - i.e., all your work is your own and free from plagiarism.

General information:

General course information for Physics and Astronomy students can be found on Learn.

